PEF, the next generation polyester, produced from the biobased building blocks FDCA and MEG

Ed de Jong

avantium
Safe Harbor Statement

This document is being furnished to you solely for information purposes and may not be reproduced or redistributed to any other person. This document does not constitute an invitation or offer to sell, or a solicitation of an offer to subscribe for or purchase, investment products or securities, including securities in Avantium Holding B.V. (the “Company”), and the information provided is not intended to provide a sufficient basis on which to make an investment decision. The information in this document is subject to change. Securities may not be offered or sold in the United States absent registration under the U.S. Securities Act of 1933, as amended or an exemption from registration.

No representation or warranty, express or implied, is given as to the completeness or accuracy of the information or opinions contained in this document and neither the Company nor any of its directors, members, officers, employees, agents or advisers accepts any liability for any direct, indirect or consequential loss or damage arising from reliance on such information or opinions. Past performance should not be taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is made regarding future performance.

This document may include statements that are, or may be deemed to be, “forward-looking statements”. These forward-looking statements may be identified by the use of forward-looking terminology, including the terms "believes", "estimates", "plans", "projects", "anticipates", "expects", "intends", "may", "will" or "should" or, in each case, their negative or other variations or comparable terminology, or by discussions of strategy, plans, objectives, goals, future events, intentions, beliefs or expectations. Forward-looking statements may and often do differ materially from actual results. Any forward-looking statements are based on and reflect the Company’s current plans, estimates and projections as well as its current view with respect to external conditions and future events; any forward-looking statements are subject to risks relating to future events and other risks, uncertainties and assumptions relating to the Company’s business, results of operations, financial position, liquidity, prospects, growth or strategies. Forward-looking statements involve inherent risks and uncertainties and speak only as of the date they are made.

The Company expressly disclaims any obligation or undertaking to update, review or revise any forward looking statement contained in this document whether as a result of new information, future developments or otherwise.
Avantium - business units

Renewable Chemistry portfolio
- Zambezi: sugar from non-food biomass
- Mekong: 1-step conversion to bio-MEG
- Early stage research: various biomass
- Electrochemistry: various e-chem routes

YXY technology: bio-based plastics
- 100% biobased, recyclable PEF with superior properties
- Major market potential in packaging materials and fibers

Supported by an established business based on proven technology

Catalysis R&D business
- Leading service and systems provider for blue chip clients in chemical and energy industry

Oct 2016, joint venture with BASF: Synvina
A lignocellulosic Biorefinery

Biomass → Hemi-cellulose → Cellulose → Sugar → Furanics

Fuels

Chemicals

Materials

Lignin

one possible route: via furanics

R=COOH, CH₂O, CH₂OH

Confidential
Strategic Options to Deploy Renewable Chemistries Projects

- Lab-scale
- Pilot plant
- Reference plant
- Industrial scale

- Scale
- Business model / earnings
- Strategic choices

- Strategic choices

- Stand-alone
- Partnering
- Sell technology

Coherent portfolio, each targeting blockbuster markets

- ZAMBEZI
- Glucose
- FDCA
- YXY Technology
- MEKONG
- MEG
- PEF
- Bottle
ZAMBEZI
Lignocellulose pretreatment
Biorefinery
Glucose

Glucose is a central building block for many bio-based chemicals and polymers.
Sugar from 1G & 2G Biomass

First generation (1G) – Sugar cane, corn, sugar beet, wheat

- Well established technology
- Delivers high quality sucrose & dextrose

Second generation (2G) - Wood, agricultural waste, waste paper, energy crops

- Technologies still in development
- A challenge to deliver high quality dextrose

Now
- Corn
- Sugar cane
- Sugar beet

Future
- Wood
- Corn stover
- Waste paper
Zambezi Process
Process outline

Improved Bergius-Rheinau process
Two stage, concentrated HCl hydrolysis
Acid / sugar separation by proprietary evaporation technology
High purity glucose product
Opportunity and Impact of Zambezi

- Demand for sugars will increase
 - Arable land will come under increasing pressure
 - Demand for 1G products (grain, starch, sugars) will increase
 - More 1G milling will need to come on-line (primarily for food and feed)
 - Demand for 2G glucose to support bio-fuels will increase
 - Volume of plastics, especially bio-based, will increase
 - Demand for high purity 2G glucose will increase

- 2G Advantages:
 - free-up more 1G sources for food
 - reduce pressure on arable land
 - reduce volatility due to reduced seasonal effects

- We believe Zambezi, more than any other 2G technology, addresses the feedstock demands for the growing bio-based chemicals industry
Expected to enter commercial stage after 2020

Clear roadmap from lab to commercialization
Production Routes for MEG

Prime Raw Material

- **Fossil based**
 - Crude Oil/Naphtha/Gas/Fuel Oil
 - Natural Gas
 - Shale Gas
 - Coal

- **Biomass based**
 - Sugar Cane
 - Maize/Corn
 - 1G and 2G C6 carbohydrates

- **Biomimetic**
 - Carbon dioxide

Intermediates

- Ethylene
- Methanol
- Ethanol
- Sorbitol
- Oxalic acid

Product

- EO
- Mix of Glycols
- White MEG
- Black MEG
- Green MEG

- Direct hydrogenolysis – Efficient conversion
- Multi-step: Low atom efficiency
- Difficult separation
MEKONG: Superior Carbon Efficiency
Superior economics

Current Commercial Production of Bio-based MEG

Fermentation

Fermentation, dehydration, Oxidation, hydration

4 steps
Max theoretical yield = 67%

Avantium MEKONG Process

Hydrogenolysis

Catalysis
1 step
Max theoretical yield = 100%
Polymerization trial with distilled-only EG
Mn/Mw similar to Petro- and Bio-MEG
Color very similar

<table>
<thead>
<tr>
<th></th>
<th>Monomers</th>
<th>Ex-Reactor PEF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mn</td>
</tr>
<tr>
<td>1</td>
<td>Bio-MEG</td>
<td>16100</td>
</tr>
<tr>
<td>2</td>
<td>Petro-MEG</td>
<td>16100</td>
</tr>
<tr>
<td>3</td>
<td>Mekong-MEG</td>
<td>16100</td>
</tr>
</tbody>
</table>
VOLTA

Electrochemical CO$_2$ Reduction
Replacing existing processes is not easy:
- H_2 / O_2 for reduction / oxidation is often more economical
- Margins on bulk processes are low: everything needs to be optimized

Combination of skills required to design new electrochemical process:
- Organic chemistry, Electrochemistry, Catalysis, Electrochemical engineering, Process design, Process Economics

Opportunities: regimes that are not accessible to conventional catalysis or chemistries:
- Target specific molecules / new feedstocks
- Where number of process steps can be reduced
- Where the amount of waste can be diminished
Building the PEF Value Chain
1. Manufacturing Strategy of FDCA and PEF

2. Commercial Opportunities for PEF films
SYNVINA: Joint Venture of two strong parents

- Building first commercial scale production plant
- Reference plant of up to 50,000 tons FDCA capacity
- PEFerence BBI Flagship project
- Commercial launch of FDCA and PEF
- Joint market development with key customers to go to market
- Building licensing package for Synvina’s technology and enabling industrial scale roll-out

BASF’s Verbund site in Antwerp, Belgium
Applications of PEF

Applications of FDCA
- Polyesters (incl. PEF)
- Polyamides
- Polyurethanes
- Other polymers
- Chemical building blocks

YXY technology
- Fructose
- FDCA
- PEF

Chemical building blocks
Polyesters (incl. PEF)
Polyamides
Polyurethanes
Other polymers

Applications of PEF
- Bottle
- Film
- Fiber
Synvina Pilot Plant

- Synvina Pilot Plant Objectives
 - Process development
 - Engineering baseline for reference plant
 - Production of FDCA and PEF for evaluation of market applications with customer

- The pilot plant is in operation from 2011, and runs continuously 24hrs per day, 365 days per year

- New pilot plant building opened in 2016
Commercial Scale Up

<table>
<thead>
<tr>
<th>Lab-scale</th>
<th>Pilot Plant scale</th>
<th>Commercial scale</th>
<th>Industrial scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>Geleen</td>
<td>Antwerp</td>
<td>Licensee Site (tbd)</td>
</tr>
<tr>
<td>Kg’s</td>
<td>Tons</td>
<td>Up to 50kt</td>
<td>Industrial Scale</td>
</tr>
<tr>
<td>Innovative research</td>
<td>Technology development</td>
<td>Commercial launch of FDCA & PEF</td>
<td>Roll-out of FDCA & PEF at larger scale</td>
</tr>
</tbody>
</table>

- **Synvina Licensing**
Agenda

1. Introduction to FDCA and PEF

2. Examples of Commercial Opportunities for PEF packaging
PEF performance benefits

- Biobased: 100% biobased
- Gas barrier performance: Oxygen 10x, CO2 10x, Water 3~4x
- Strength: 60% higher modulus
- Superior heat resistance: 12°C higher glass transition
- Recyclability: 100% recyclable
Recycling

- Optimize end-of-life solutions for PEF polymer

- PEF to PEF recycling is similar to PET recycling
 - Mechanical recycling
 - Chemical recycling

- Transition period: PEF in the rPET stream
 - **Sorting**: PEF can be separated from PET by IR sorting
 - **Effect of PEF in rPET stream**:
 - Impact on rPET processes and end products assessed with recycling industry organizations
 - PEF significantly less impact on rPET than Nylon or PLA
Performance benefits of small PEF bottles for carbonated beverages

- Weight
- Transport
- CO₂ barrier
- Shape freedom
- Production complexity

Glass

PET

Aluminium / Steel / Tin

Multi-layer
Small size PEF bottles for carbonated beverages
Customer demand for smaller servings

In collaboration with ALPLA

Compared to same bottle in PET:
- 2x Top Load
- Up to 6x CO₂ shelf life
- Improved creep resistance

Opportunities:
- Longer supply chains enable new sales channels
- Optimized production cycles
- Shape freedom enables Brand differentiation (vs. cans)

8 oz (237 mL)
Thank you for your attention.

Questions??

ed.dejong@avantium.com
+31 6 34347096